Implicit 3D Modeling of Ore Body from Geological Boreholes Data Using Hermite Radial Basis Functions
نویسندگان
چکیده
منابع مشابه
Hermite Radial Basis Functions Implicits
The Hermite Radial Basis Functions (HRBF) Implicits reconstruct an implicit function which interpolates or approximates scattered multivariate Hermite data (i.e., unstructured points and their corresponding normals). Experiments suggest that HRBF Implicits allow the reconstruction of surfaces rich in details and behave better than previous related methods under coarse and/or nonuniform sampling...
متن کاملScattered Data Modelling Using Radial Basis Functions
Radial basis functions are traditional and powerful tools for multivariate interpolation from scattered data. This self-contained talk surveys both theoretical and practical aspects of scattered data fitting by radial basis functions. To this end, basic features of the radial basis function interpolation scheme are first reviewed, such as well-posedness, numerical stability and approximation or...
متن کاملImplicit Fitting Using Radial Basis Functions with Ellipsoid Constraint
Implicit planar curve and surface fitting to a set of scattered points plays an important role in solving a wide variety of problems occurring in computer graphics modelling, computer graphics animation, and computer assisted surgery. The fitted implicit surfaces can be either algebraic or non-algebraic. The main problem with most algebraic surface fitting algorithms is that the surface fitted ...
متن کاملCreating Surfaces from Scattered Data Using Radial Basis Functions
This paper gives an introduction to certain techniques for the construction of geometric objects from scattered data. Special emphasis is put on interpolation methods using compactly supported radial basis functions. x1. Introduction We assume a sample of multivariate scattered data to be given as a set X = solid to these data will be the range of a smooth function s : IR d ! IR D with s(x k) =...
متن کاملHermite interpolation with radial basis functions on spheres
We show how conditionally negative deenite functions on spheres coupled with strictly completely monotone functions (or functions whose derivative is strictly completely monotone) can be used for Hermite interpolation. The classes of functions thus obtained have the advantage over the strictly positive deenite functions studied in 17] that closed form representations (as opposed to series expan...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Minerals
سال: 2018
ISSN: 2075-163X
DOI: 10.3390/min8100443